

Computing Progression Map

 Reception Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Information
Technology

complete a
simple
activity/game
on a digital
device.

use software to
create digital
content (art,
music etc).

shoot and
review digital
photos.

type letters
using a
keyboard
(physical or
touchscreen) to
write short
words or
sentences.

recognise that
digital content
is represented
in many forms
(image, text,
audio, video).

use a variety of
software to
manipulate
and present
digital content.

talk about my
work and make
changes to
improve it.
I can name,
save and find
my work.

use a range of
input and
output devices
(keyboard,
mouse,
touchscreen,
microphone,
screen,
printout, video,
audio etc).

organise and
find data using
specific
searches (e.g.
using
2Investigate).

use several
programs to
organise
information
(e.g. using
binary trees
such as
2Question or
spreadsheets
such as
2Calculate).

carry out
searches to find
digital content
on a range of
online systems
(e.g. on an
internet search
engine).

collect,
organise and
presents data
and
information in
digital content.

talk about my
work and make
improvements
based on
feedback
received.

present and
analyse data
and
information
using different
software (e.g.

understand the
purpose of a
search engine
and the main
features within
it.

look at
information on
a webpage and
make
predictions
about the
accuracy of
information
contained
within it.

create and
improve my
solutions to a
problem based
on feedback
(e.g. creating a
program using
Scratch or
2Code).

search precisely
when using a
search engine
(e.g. I know I
can add
additional
words or
remove words
to help find
better results).

explain in
detail how
accurate, safe
and reliable the
content is on a
webpage.

recognise the
audience when
designing and
creating digital
content.

comment on
how successful
a digital
solution is that
I have created

use filters when
searching for
digital content
and can use
more complex
searches for
information
(e.g. 'AND',
'OR’, ‘NOT').

explain in
detail how
accurate and
reliable a
webpage and
its content is.

compare a
range of digital
content sources
and rate them
in terms of
content quality
and accuracy.

consider the
intended
audience
carefully when

edit digital
data (e.g. data
in music
composition
software like
2Sequence).

2Question -
branching
database or
2Graph -
graphing tool).

review
solutions that
others have
created, using
a checklist of
criteria

(e.g. a program
built in 2Code
or Scratch).

I design and
make digital
content.

Computer Science
(Theory)

identify the
main
parts of a
computer
system
(monitor,
mouse,
keyboard,
printer etc).

recognise that
a range of
technology is
used in places
such as
homes and
schools.

share my
experiences of
observing
technology in
school and

recognise and
name common
input and
output devices
of computer
system.

recognise the
difference
between old
and new
technology
(e.g.
typewriter and
smartphone).

explain how
people interact
with computers
(e.g. cashpoint
machine,
self-service
scanners etc).

explain the
functions
of the main
components
of a computer
system.

understand
that my
creations (e.g.
programs),
need similar
skills to the
adult world
(e.g. the
ParentPay etc
used for
collecting
money for
school trips).

describe uses of
technology
beyond school.

understand the
difference
between
hardware and
software and
their roles
within
computer
system.

use
communication
tools (such as
2Email) to
attach files and
use tools
respectfully
and with good
etiquette.

identify
different ways
that the

recognise the
main
component
parts of
hardware
which allow
computers to
join and
form a
network.

understand
that network
and
communication
components
can be found
in many
different
devices which
allow them to
join the
internet.

know that
computers
collect data
from various
input devices.

know the
importance of
computer
networks and
how they help
solve problems
and enhance
communication
.

recognise the
main dangers
that can be
perpetuated via
computer
networks.

use the most

understand
why and
when
computers are
used
and
understand the
main
functions of the
operating
system.

know the
difference
between
physical,
wireless and
mobile
networks.

explain the
difference
between the

beyond the
classroom.

(e.g. explain
how a
supermarket or
airport uses
ICT to help it
operate).
identify uses of
technology
beyond school
(e.g. wearable
technology,
robots, drones,
simulations
etc) and
discuss reasons
why they are
helpful . ***
iWristband

internet can be
used for
communication
confidently
share my own
experiences of
technology in
school and
beyond the
classroom.

understand
how the
Internet works,
including how
it is structured
and how data
travels along it.
understand
how search
engines
operate,
including how
they rank
results.

show an
awareness of
tasks best
completed by
humans or
computers.

appropriate
form of
online
communication
according to
the digital
content. (e.g.
2Email,
2Blog).

find out about
the history of
computing,
including
pioneers in
developing
different
technologies.

internet and
the World
Wide Web.

explain what a
WAN (Wide
Area Network)
and LAN (Local
Area Network)
is and describe
the process of
how access to
the internet in
school is
possible.

describe the
services offered
by the Internet.

Computer Science
(Coding and
Computational
Thinking)

follow given
instructions to
program a
physical
device.

understand
what an
algorithm is.

demonstrate
an ability to

explain that an
algorithm is a
set of precise
step-by-step
instructions to
achieve a
particular task.

know that an
algorithm
written for a
computer is

understand
that algorithms
are
implemented
on digital
devices as
programs and
can identify
examples of
each.

make a real-life
situation into
an algorithm
for a program.

design an
algorithm
carefully,
thinking about
what I want it
to do and how

turn a real-life
situation to
solve into an
algorithm,
using a
diagram to
express
solutions.

use repetition
in my code. For
example, using

make more
complex real-
life problems
into algorithms
for a program.

test and debug
my programs
as I work.

convert
(translate)

turn a complex
programming
task into an
algorithm.

identify the
important
aspects of a
programming
task(abstractio
n).

following an
algorithm.

design simple
algorithms.

detect and
corrects errors
(debugging) in
simple
algorithms.

called a
program.

work out what
is wrong when
the steps are
out of order in
instructions.
say that if
something does
not work how
it should, it is
because my
code is
incorrect.

try and fix my
code if it isn’t
working
properly
(debugging).

make good
guesses
(logical
reasoning) of
what is going
to happen in a
program. For
example, where
the Bee- Bot
might go.

know I need to
carefully plan
my algorithm
so it will work
when I make it
into code.

design a simple
program (e.g.
using 2Code)
that achieves a
purpose.

find and correct
some errors in
my program
(debugging).
I can say what
will happen in
a program.

spot something
in a program
that has an
action or effect
(does
something).

I can turn it
into code.

design a
program
thinking
logically about
the sequence of
steps required.
experiment
with timers in
my programs.

experiment
with the effect
of using repeat
commands.

identify the
difference in
using the effect
of a timer or
repeat
command in
my code.

identify an
error in my
program and
fix it.

read programs
with several

a loop that
continues until
a condition is
met such as
the correct
answer being
entered.

use timers
within my
program
designs more
accurately to
create
repetition
effects.

use selection
(decision) in
my
programming.
For example,
using an ‘if
statement’ for a
question being
asked and the
program takes
one of two
paths.

use variables
within my
program and

algorithms that
contain
sequence,
selection and
repetition into
code that
works.

use sequence,
selection,
repetition, and
some other
coding
structures in
my code.

organise my
code carefully
for example,
naming
variables and
using tabs. I
know this will
help me debug
more
efficiently.

use logical
methods to
identify the
cause of any
bug with
support to

decompose
important
aspects of a
programming
task in a
logical way,
identifying
appropriate
coding
structures that
would work.

test and debug
my program as
I work on it
and use logical
methods to
identify a
cause of a bug.

identify a
specific line of
code that is
causing a
problem in my
program and
attempt a fix.

translate
algorithms that
include
sequence,
selection and

steps and
predict what it
will do.

know how to
change the
value of
variables.

use the user
inputs and
output features
within my
program, such
as ‘Print to
screen’.

identify errors
in my code by
using different
methods, such
as steeping
through lines
of code and
fixing them.

read programs
that contain
several steps
and predict the
outcomes with
increasing
accuracy.

identify the
specific line of
code.

repetition into
code and nest
these structures
within each
other.

use inputs and
outputs within
my coded
programs such
as sound,
movement and
buttons and
represent the
state of an
object.

interpret
(understand) a
program in
parts and can
make logical
attempts to put
the separate
parts together
in an algorithm
to explain the
program as a
whole.

